Stabilizing P?P: P22–, P2?–, and P20 as bridging ligands
نویسندگان
چکیده
•Redox series with end-on bridging (P2)2?, (P2)??, and (P?P)0 ligands•A P2 complex bonding characteristics comparable to that of free (P?P)0•Stabilizing heavier dipnictogen redox-inactive Lewis acids Chemical synthesis relies on strategies stabilize well-defined molecular building blocks while also retaining their fundamental reactivity. This is illustrated by the classic pnictogen dichotomy. In contrast highly stable N2, higher homologs Pn2 evade isolation—and thus synthetic use—as a result preference p-block elements for ?-bonding. Previous ?-bonded compounds such as coordination electron donors have significantly altered Here, we demonstrate transition-metal fragments strategy under ambient conditions retention P?P triple bond character, in case P2. The release Lewis-acidic capping agents offers transfer reactivity products. work provides new stabilization reactive species multiply bonded heavy use reagents chemical synthesis. its lighter congener neutral diphosphorus observable only gas phase matrix isolation. efforts bases (e.g., carbenes) or led charge electrophilic significant reduction order. report crystallographic, spectroscopic, quantum characterization redox [(?2,?1:?1-P2){Pt(PNP)}2] (PNP = N(CHCHPtBu2)2), which features (P2)2–, (P2)?–, (P2)0 ligands. Although common neutral, triply ligand unprecedented homolog. It was enabled metal gave rise controlled condensed phase. distinct differences between 2p are an intriguing feature periodic table. For example, classical double-bond rule implies instability beyond second period.1Pitzer K.S. Repulsive forces relation energies, distances other properties.J. Am. Chem. Soc. 1948; 70: 2140-2145Crossref Scopus (180) Google Scholar, 2Mulliken R.S. Overlap integrals binding 1.J. 1950; 72: 4493-4503Crossref (210) 3Power P.P. ?-bonding lone pair effect multiple bonds main group elements.Chem. Rev. 1999; 99: 3463-3504Crossref PubMed (937) 4Fischer R.C. Power involving elements: developments millennium.Chem. 2010; 110: 3877-3923Crossref (753) 5Dasent W.E. Nonexistent Compounds: Compounds Low Stability. Marcel Dekker, 1965Google 6Weber L. chemistry diphosphenes congeners: synthesis, structure, reactivity.Chem. 1992; 92: 1839-1906Crossref (258) 7Sasamori T. Tokitoh N. Doubly systems 15 elements.Dalton Trans. 2008; 2008: 1395-1408Crossref 8Protasiewicz J.D. 1.12-multiply elements.in: Reedijk J. Poeppelmeier K. Comprehensive Inorganic Chemistry II. Second Edition. Elsevier, 2013: 325-348Crossref (9) 9Wang Y. Robinson G.H. Unique homonuclear compounds.Chem. Commun. 2009; 2009: 5201-5213Crossref (234) Scholar observation manifestation attributable relative sizes valence s p atomic orbitals (AOs).10Kutzelnigg W. elements.Angew. Int. Ed. 1984; 23: 272-295Crossref (916) 11Kaupp M. role radial nodes table.J. Comput. 2007; 28: 320-325Crossref (78) 12Wang Z.L. Hu H.S. von Szentpály Stoll H. Fritzsche S. Pyykkö P. Schwarz W.H.E. Li Understanding uniqueness tables.Chem. Eur. 2020; 26: 15558-15564Crossref (17) 13Kaupp main-group Frenking G. Shaik Bond. Wiley-VCH, 2014: 1-24Google absence renders lowest orbital given angular momentum, i.e., “primogenic” 1s, 2p, 3d, 4f orbitals, exceptionally compact.12Wang similar size 2s facilitates p?-p? weakens single N, O, F lone-pair repulsion. presence leads expansion np AOs elements, resulting s/p mismatch causes hybridization defects.10Kutzelnigg Scholar,11Kaupp results stronger ? weaker ? period.14Jacobsen Ziegler Pauli repulsion bonding: structural consequences energetic implications.Comments Inorg. 1995; 17: 301-317Crossref (32) Scholar,15Power An update importance repulsion, charge-shift London dispersion force effects.Organometallics. 39: 4127-4138Crossref (35) Jerabek put forth detailed assessment these relations pertinent disparate stabilities homologous N2/N4 P2/P4 pairs.16Jerabek Comparative analysis N2 versus tetrahedral N4 P4.Theor. Acc. 2014; 133: 1447Crossref (22) Scholar,17Jerabek Erratum to: comparative 2015; 134: 136Crossref (4) high stability contrasts endothermic nature diatomic (?fH°gas 33.4 kcal·mol–1) singly allotropic modifications, white P4 14.1 polymeric black phosphorus.18Chase, M.W., Jr. (1998). NIST-JANAF Themochemical Tables (Fourth Edition). https://janaf.nist.gov/.Google thermochemical challenge has spurred development situ either pyrolysis photolysis phosphorus19Bock Mueller Gas-phase reactions. 44. phosphorus P4?2P2 equilibrium visualized.Inorg. 4365-4368Crossref (58) Scholar,20Tofan D. Cummins C.C. Photochemical incorporation units into organic molecules.Angew. 49: 7516-7518Crossref (70) organometallic precursors.21Velian A. Nava Temprado Zhou Field R.W. A retro Diels–Alder route chemistry: precursor kinetics 1,3-dienes, detection beam mass spectrometry.J. 136: 13586-13589Crossref (47) Scholar,22Piro N.A. Figueroa J.S. McKellar J.T. Triple-bond molecules.Science. 2006; 313: 1276-1279Crossref (143) search stabilizing P2, base exploited conceptual recent years. Starting from coupling P1-synthons, adducts strong carbene, boryl, vinyl, cyclopentadienyl, germyliumylidenyl, silylene could be isolated (Figure 1).23Nesterov V. Reiter Bag Frisch Holzner R. Porzelt Inoue NHCs chemistry.Chem. 2018; 118: 9678-9842Crossref (379) 24Doddi Peters Tamm N-heterocyclic carbene ligands transition 2019; 119: 6994-7112Crossref (219) 25Wang Xie Wei King R.B. Schaefer H.F. v.R. Schleyer et al.Carbene-stabilized diphosphorus.J. 130: 14970-14971Crossref (302) 26Back O. Donnadieu B. Parameswaran Bertrand Isolation crystalline carbene-stabilized P2-radical cations P2-dications.Nat. 2: 369-373Crossref (218) 27Asami S.S. Okamoto Suzuki Yamashita boryl-substituted diphosphene: reaction n-butyllithium form stabilized adduct interaction.Angew. 2016; 55: 12827-12831Crossref (38) 28Wilson D.W.N. Franco M.P. Myers W.K. McGrady J.E. Goicoechea J.M. Base induced isomerisation phosphaethynolato-borane: mechanistic insights boryl migration decarbonylation afford triplet phosphinidene.Chem. Sci. 11: 862-869Crossref 29Liu L.L. Cao Stephan D.W. Facile cleavage P=P double vinyl-substituted diphosphenes.Angew. 58: 273-277Crossref (26) 30Rottschäfer Sharma M.K. Neumann Stammler H.G. Andrada D.M. Ghadwal modular access divinyldiphosphenes strikingly small HOMO–LUMO energy gap.Chem. 25: 8127-8134Crossref (27) 31Wang Szilvási Yao Driess bis(silylene)-stabilized compound monophosphorus anion reagent.Nat. 12: 801-807Crossref (23) 32Lauk Zimmer Morgenstern Huch Müller C. Sitzmann Schäfer Tetra- pentaisopropylcyclopentadienyl complexes elements.Organometallics. 2021; 40: 618-626Crossref (5) 33Xiong Ballestero-Martínez E. Grützmacher Unexpected photodegradation phosphaketenyl-substituted germyliumylidene borate complex.Angew. 2017; 56: 4333-4336Crossref (57) However, injects density ?? MOs, thereby reducing order products diphosphene even diphosphane character. 34Holzmann Dange Jones Dinitrogen lewis acid: structure triphenylphosphinazine N2(PPh3)2.Angew. 2013; 52: 3004-3008Crossref (63) Scholar,35Holzmann Bonding situation dimeric [(NHC)2(E2)] (E N–Bi).Z. Naturforsch. 69: 385-395Crossref Triply might alternatively non-bonding terminal pairs: isolable were obtained activation low-valent complexes36Scherer O.J. Ehses Wolmershäuser Activation at room temperature.Angew. 1998; 37: 507-510Crossref (45) 37Hulley E.B. Wolczanski P.T. Lobkovsky [(silox)3M]2(?:?1,?1-P2) (M Nb, Ta) [(silox)3Nb]2{?:?2,?2-(cP3–cP3)} (silox)3M NbPMe3, (silox tBu3SiO).Chem. 6412-6414Crossref 38Cossairt B.M. Piro Early-transition-metal-mediated transformation phosphorus.Chem. 4164-4177Crossref (294) 39Caporali Gonsalvi Rossin Peruzzini late-transition complexes.Chem. 4178-4235Crossref (289) 40Dielmann F. Sierka Virovets A.V. Scheer Access extended polyphosphorus frameworks.Angew. 6860-6864Crossref 41Zarzycki Zell Schmidt Radius U. Ni0: selective formation NHC-stabilized, dinuclear nickel [Ni2(iPr2Im)4(?,?2:2-P2)].Eur. 2051-2058Crossref 42Yao Lindenmaier Xiong Adelhardt Sutter Meyer Reductive iron(I) centres: characterisation Fe2(P2)2 two P22- ligands.Chem. 51: 6153-6156Crossref P1-synthons 1).43Schäfer Binder Fenske Chelate-stabilized nickel.Angew. Engl. 1985; 24: 522-524Crossref (52) 44Hierlmeier Hinz Wolf Synthesis nickel-stabilised ?2:?2,?2-P2, As2 PAs units.Angew. 57: 431-436Crossref (42) 45Liu Ruiz D.A. Dahcheh Suter Tondreau A.M. Au-, Co-?1PCO Cu-?2PCO complexes, conversion Ir-?1PCO dimetalladiphosphene, interaction-free PCO anion.Chem. 7: 2335-2341Crossref 46Grant L.N. Pinter Manor B.C. Mindiola D.J. planar Ti2P2 core assembled reductive ?O?C?P P?P radical coupling.Chem. 6272-6276Crossref 47Abbenseth Diefenbach Alig Würtele Holthausen M.C. Schneider Oxidative rhenium pnictide complexes.Angew. 10966-10970Crossref (15) 48Du Hunger Seed J.A. Cryer Wooles A.J. van Slageren Liddle S.T. Dipnictogen f-element uranium complex.J. 143: 5343-5348Crossref (7) affinity (0.63 eV),49Jones R.O. Ganteför Hunsicker Pieperhoff Structure spectroscopy cluster anions: theory (simulated annealing) experiment (photoelectron detachment).J. Phys. 103: 9549-9562Crossref (76) exceeds O2 (0.45 eV),50Ervin K.M. Anusiewicz I. Skurski Simons Lineberger W.C. state O2- X 2?g ground it (still!) adiabatic detachment 0.45 eV.J. 2003; 107: 8521-8529Crossref considerable transfer, reported contain (P=P)2– (P–P)4– While formally linearly (EA(N2) –1.9 eV)51Huber K.P. Herzberg Molecular Spectra Structure. IV. Constants Diatomic Molecules. Springer, 1979Crossref most common,52Klopsch Yuzik-Klimova E.Y. Functionalization mid late metals via N–N Bond cleavage.in: Nishibayashi Nitrogen Fixation. Springer International Publishing, 2017: 71-112Crossref (40) analogous P?N recently reported;53Martinez J.L. Lutz S.A. Beagan Gao X. Pink Chen C.H. Carta Moënne-Loccoz Smith Stabilization dinitrogen analogue, nitride.ACS Cent. 6: 1572-1577Crossref bona fide remain unknown today. past, examined ligands,54Scheibel M.G. Askevold Heinemann F.W. Reijerse E.J. de Bruin Closed-shell open-shell square-planar iridium nitrido complexes.Nat. 2012; 4: 552-558Crossref (138) 55Scheibel Wu Stückl A.C. Krause Carl Stalke transient, rhodium.J. 135: 17719-17722Crossref (95) 56Abbenseth Finger Kasanmascheff Coupling complexes.Inorg. Front. 3: 469-477Crossref leading pincer (P=P)0 acid push-pull interaction 1).47Abbenseth We further utilized related platinum platform synthesize metallonitrene [Pt(N)(PNP)] N(CHCHPtBu2)2) bound N– biradical.57Sun Abbenseth Verplancke platinum(II) state.Nat. 1054-1059Crossref subvalent nitrogen negligible back {PtII(PNP)} fragment. sparked our interest evaluate this without substantial transfer. [(P2){Pt(PNP)}2]n+ (n 0–2) (P2)?– and, first time, phosphaethynolate [Pt(PCO)(PNP)] (1; supplemental experimental procedures) synthesized salt metathesis previously triflate complex57Sun Na(dioxane)x(OCP). assignment confirmed single-crystal X-ray diffraction S75). 31P{1H} NMR shift (?P –374 ppm; Figure S3) stretching mode (? 1,869 cm?1; S35) phosphaketene typical range late-transition-metal ?1-PCO complexes.45Liu analogy 9 10 complexes,44Hierlmeier Scholar,45Liu 1 benzene temperature (LED, ?exc 456 nm) decarbonylative P–P isolation [(?-P2){Pt(PNP)}2] (2) over 90% yield 2). phosphide (or metallophosphinidene) [Pt(P)(PNP)] likely transient intermediate but not characterized, e.g., photocrystallography like [PtN(PNP)],57Sun insufficient upon photolysis. Notably, nitridyl [Ir(N)(PNP)] reported.54Scheibel 2 solid 3) strongly bent Pt–P–P–Pt distance (Table 1) Mes?P=PMes? (2.034(2) Å).58Yoshifuji Shima Inamoto Hirotsu Higuchi bis(2,4,6-tri-tert-butylphenyl)diphosphene: true phosphobenzene.J. 1981; 4587-4589Crossref (763) {Pt(PNP)} oriented almost perpendicular respect each (80.8°), idealized Cs symmetry. signal (?P(C6D6) +57.3 S7) one low field P2-bridge +707 ppm) indicate fluctional behavior timescale, frozen temperatures down –60°C. 31P supports seen Grützmacher’s diiridium +683 Bertrand’s phosphenium +675 ppm).45Liu Scholar,59Liu Munz singlet phosphinidene temperature.Chem. 1: 147-153Abstract Full Text PDF (171) 195Pt–31P J-coupling bridge (JPtP 326 Hz; 2A) about magnitude smaller compared (1JPtP 2,976 Hz), line 3p-character diphosphenediide ions.60Kühl Phosphorus-31 Spectroscopy. 2009Crossref (112) Accordingly, natural (NBO) reveals Pt–P localized (NLMO) 83% p-character P atom contribution (averaged 62% atoms). UV-visible spectrum weak 686 nm (? 90 M–1·cm–1; S23), can assigned dipole forbidden ??(P2) ? HOMO/LUMO within (P2)2– core, time-dependent density-functional (TD-DFT) S85). Raman (?exc 514.5 nm, THF; S30), vibration tentatively band around 582 cm–1 (calc: 654 cm–1, unscaled), close found (610–624 cm–1).61Cowley A.H. Stable elements.Acc. Res. 386-392Crossref (182) Scholar,62Hamaguchi Tasumi Yoshifuji phosphorus-phosphorus frequency observed resonance bis(2,4,6-tri-tert-butylphenyl)diphosphene.J. 106: 508-509Crossref (34) ScholarTable 1Selected lengths (Å) angles (deg) 2–4Pt–NPt–PPNPPt–PP2P–PPt–P–P22.099(4)2.3190(14)–2.3292(14)2.3077(14)2.037(2)108.30(8)2.097(4)2.3260(16)119.22(9)3aValues independent molecules asymmetric unit.2.068(9)2.329(3)–2.335(3)2.251(3)1.984(5)121.75(18)2.057(9)2.261(3)133.87(18)42.017(2)2.3535(7)–2.3575(8)2.2003(9)1.8649(17)162.67(6)a Values unit. Open table tab notion bridged corroborated electronic (Figures S80 S81). NBO/NLMO atoms S81), resembling parent HP=PH. topological computed Bader’s (QTAIM): all relevant classification criteria, including ellipticity delocalization index two,63Bader R.F.W. Stephens M.E. Spatial localization number distributions molecules.J. 1975; 97: 7391-7399Crossref (625) Scholar,64Cortés-Guzmán Bader Complementarity QTAIM MO study donor–acceptor complexes.Coor. 2005; 249: 633-662Crossref (400) bear resemblance P2H2 S84). low-energy suggestive P2-centered chemistry. Diphosphenyl cations, {RPPR}?+, generally substituents allow spin (R carbene)26Back Scholar,65Sharma Rottschäfer Blomeyer Gastel Diphosphene dications ?-conjugated C2P2C2-framework.Chem. 10408-10411Crossref 66Doddi Bockfeld Zaretzke Kleeberg Bannenberg approach species.Dalton 46: 15859-15864Crossref 67Ho L.P. Heteroleptic arsaphosphenes bearing anionic carbenes.Chem. 10709-10712Crossref chromium.68Wang Xu C.Q. Fang Zhao Wang cation three-center three-electron chromium: side-on coordination.Angew. 9419-9424Crossref (13) cyclic voltammogram PhF shows reversible oxidation waves E1°= –0.91 V E2° 0.01 (versus FeCp2+/0; S28).69In addition, (THF/NBu4PF6 electrolyte) ?3 V, (see S29). reversibility E2 requires inert electrolytes, PhF/[NBu4][BArF4], indicating electrophilicity after two-electron oxidation. equiv [Cp?2Fe][BArF4] [(?-P2){Pt(PNP)}2][BArF4] (3) 84% resembles conformation 3), yet slightly relaxed zig-zag-shaped expressed Pt–P–P 1). Furthermore, Pt–P2 (?dav –0.06 Å) (?d –0.05 shortened. These removal antibonding MO. 626 S31) vibration. hypsochromic (?? 44 cm–1) excellent agreement DFT 49 ?B97X-D/def2-TZVP level), well shortening (?dDFT Å). moved near-infrared region broad 846 890 S24). magnetic 3 SQUID magnetometry S38) simple Curie-type paramagnetism doublet (S 1/2) state. Q-band EPR chlorobenzene 147 K rhombic 2B). g-anisotropy (g [2.042, 1.994, 1.887]) far below platinum(III) compounds.70Rivada-Wheelaghan Ortuño M.A. García-Garrido S.E. Díez Alonso P.J. Lledós Conejero stable, mononuclear, cationic Pt(III) stabilised bulky 50: 1299-1301Crossref Besides hyperfine (HFI)
منابع مشابه
Xanthene and xanthone derivatives as G-quadruplex stabilizing ligands.
Following previous studies on anthraquinone and acridine-based G-quadruplex ligands, here we present a study of similar aromatic cores, with the specific aim of increasing G-quadruplex binding and selectivity with respect to duplex DNA. Synthesized compounds include two and three-side chain xanthone and xanthene derivatives, as well as a dimeric "bridged" form. ESI and FRET measurements suggest...
متن کاملDesign and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2' ligands in pseudosymmetric dipeptide isosteres.
A series of novel HIV-1 protease inhibitors based on two pseudosymmetric dipeptide isosteres have been synthesized and evaluated. The inhibitors were designed by incorporating N-phenyloxazolidinone-5-carboxamides into the hydroxyethylene and (hydroxyethyl)hydrazine dipeptide isosteres as P2 and P2' ligands. Compounds with (S)-phenyloxazolidinones attached at a position proximal to the central h...
متن کاملPnictides as symmetrically bridging ligands in novel neutral complexes
The reaction of [LWCl] (3) [L = N(CH2CH2NiPr)3] with LiE(SiMe3)2 (E = P, As, Sb) yields the novel, neutral pnictido-bridged complexes [LW = E = WL] (5-7). By following the reaction, which starts from the LiP-(SiMe3)2 derivative, by 31P NMR spectroscopy, the formation of an intermediate with a terminal pnictido ligand can be ruled out. The paramagnetic complexes 5-7 are comprehensively spectrosc...
متن کاملStabilizing Protein-Protein-Interactions with Multivalent Ligands
Huntington’s disorder (HD) is one of the neurodegenerative disorders in which the polyglutamine (polyQ) tract of the protein huntingtin (htt) is found to be expanded. First exon of this mutant htt protein is found in the inclusions in the brain of the patient suffering from HD, which is the pathological hallmark of the disease1. Exon-1 of htt comprises of 17 amino acid long N-terminal helix (Nt...
متن کاملVersatile N2S2 nickel-dithiolates as mono- and bridging bidentate, S-donor ligands to gold(I).
Development of square planar cis-dithiolate nickel complexes as metallo S-donor ligands focuses on the synthesis and structures of gold(I) heterometallic clusters derived from assemblage with three NiN2S2 complexes: Ni(bme-daco), Ni(bme-dach) and Ni(ema)(2-) (bme-daco = (bismercaptoethanediazacyclooctane); bme-dach = bismercaptoethanediazacycloheptane; and ema = N,N'-ethylenebis-2-mercaptoaceta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2021.06.006